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A method for location of the peak in a step-scan-measured Bragg reflexion profile is described. It leads 
to a ratio between the standard deviation of the intensity and the intensity, a(1)/l, which is near minimum. 
The method is based on the observation that if a(1)/l is calculated for all possible peak widths for a 
given profile then a(1)/l is minimum near the true value of the peak width, and minimal a(1)/l can thus 
be used as a criterion for correct location of the peak. The intensity determined this way is however 
in general slightly underestimated, and the bias as well as possible corrections are discussed. In addition 
a simple function resembling a(1)/I, which has proved to be useful for practical applications, is given. 

Introduction 

When the profile of a Bragg reflexion is known at a 
sufficient number of points, it is possible to determine 
the intensity of the reflexion. This is done by integrating 
(summing the individual profile intensity measure- 
ments) over the part of the profile assumed to contain 
elastically diffracted radiation, and subtracting from 
this integral the background intensity, which is assessed 
from the remaining part of the profile. In the following 
we assume for simplicity that the profile does not con- 
tain appreciable contributions from white radiation 
streaks or from thermal diffuse scattering. 

The amount of data required to put this method into 
use for intensity measurements in single-crystal struc- 
ture determination is quite extensive, and a usual way 
of overcoming this difficulty is to perform the integra- 
tion at the time of measurement through use of the so- 
called background-peak-background (BPB) method. 

Knowledge of the profile of the Bragg reflexion 
nevertheless gives obvious advantages over the BPB 
method. In cases where an intensity is in question the 
BPB measurement gives little alternative but remeas- 
urement, while the profile data for a reflexion may be 
reexamined for individual features. Besides, as the 
peaks may vary in position and width for different re- 
flexions, the BPB method must use a peak scan width 
wider than the optimal width. The intensity obtained 
from a profile measurement, which includes determina- 
tion of this optimal width, will therefore have smaller 
standard deviation than the BPB intensity, if the same 
time is spent on the two measurements, or conversely, 
the time one has to spend on a reflexion to obtain a 
certain standard deviation is smaller for a profile than 
for a BPB measurement. 

Location of the background 

Let the points of the profile be 

! ( i )  i -  ! ,  , ,n 

measured for the same length of time at n equidistant 
angular settings 

O(i) i= l. . .n 

of the crystal when rotated through the Bragg re- 
flecting position. The integrated intensity of the re- 
flexion is then given by 

p 

I = ~ [ l ( i ) - B ( i ) ]  (1) 

where the summation is over the p points in the centre 
of the profile which contains Bragg scattering, and 
B(i), the background, is a function derived from the 
remaining b points, the background. The variance 
based on counting statistics is approximately 

p p 

var (I)___var [ ~ I ( i ) l+var  [ ~ B(i)] 
p p 

~- ~ I(i)+ ~ var [B(i)I, (2) 

assuming Poisson distribution for the I(i). 
The main difficulty in calculating I consists then in 

locating the p points over which to integrate. Bartl & 
Schuckmann (1966) have shown that the background 
can be located by projecting the profile points on to the 
intensity axis. The background level is then given by 
the point on the intensity axis where the density of 
points is highest. Slaughter (1969) has described a 
method in which variations of the double difference 
{A 2= [I(i + 1 ) -  I ( i ) ] -  [ I ( i ) -  I ( i -  1)]} and the curvature 
are used to determine the peak position. A different 
approach to the problem is given by Diamond (1969). 
A profile based on previous measurements is fitted to 
the actual profile by the method of least squares, 
thereby avoiding the problem of determining the peak 
position. This method is especially useful for low- 
intensity reflexions. A somewhat similar approach has 
been suggested by Norrestam (1972), who obtained 
the intensity by first subtracting from each I(i) the 
minima! ~0unt f0und~ and then fitting the resulting 
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profile to a Gaussian by means of least-squares 
methods. 

The ratio o(I)/I for different data processing and 
data collecting methods can be taken as a measure of 
the quality of the method, i.e., the smaller the ratio the 
better the method. Accordingly, the best limits for the 
peak in a given profile are then those corresponding to 
a minimum in ¢r(I)/L when this quantity is calculated 
for the limits of the peak taking all possible values, and 
we actually find that the limits obtained this way coin- 
cide quite well with the true positions. The following 
argument was our starting point: 

Let I and a(I) be determined by (1) and (2), and let 
B(i) be known (for example a constant value). If the 
range of summation (p) is wider than the true peak 

P 

then in (2) YJ(i) will be bigger than for the true peak, 

and ,  as the background is based on fewer points, 
p 

var [~B(i)] will be bigger too, leading in all to a bigger 
var (I) and a ratio a(I)/I which is larger than that for 
the true peak width, assuming I to be unaltered. 

If the summation range decreases, both I and a(1) 
will decrease and for a very small range I will go to zero 
making ¢r(I)/I very big. So a minimum will exist for 
some intermediate range of summation, possibly near 
the true value. This minimum will be found for dI/I 
identical to da(I)/cr(I), where d indicates the change 
in the quantities as the summation range decreases. To 
obtain an estimate for the location of this minimum we 
make a few simple assumptions. 

First we will assume that the background can be 
written as 

= P ~ I(i)=pB B(i) 
and 

var [ ~  B(i)]  = ( ~ ) z ~  I(i)=~ ~ B(i), 

i(,) 

BN=2 { 

1 BN=O'5 

I I I I 
-1.0 0 1.0 2.0 3.0 X 

Fig. 1. Profile consisting of unit normal-distribution-shaped 
Bragg scattering and a constant background. The back- 
ground is varied to obtain two 'intensity-background' ratios, 
N, and for the two cases the computed location of the point 
dividing peak and background is given together with the 
bias in intensity indicated by shaded areas. 

where B is the mean background value, and secondly 
we will assume that we are studying a range where p is 
not too different from b, so that derivatives of the form 
d(p/b) will be small. We then get, if we decrease the 
summation over the peak by one point, j :  

I I 
H 

b [I(j)-B] 
.- 

P P 

I( i )-  ~ B(i) 
where n = p  +b,  and similarly we get 

de(l)  d var (l) d ~ / ( i ) + d [  (_~_)2 ~ 1(i)] 

e(l---~ = 2 var (I) ....................... 2-var (I) 

(1 '" - - I ( j ) -  2 ~2- B 

We will now assume that j is to be found in the tail of 
the Bragg scattering so that B, the mean background, 
is only slightly different from the true value, and we can 
then introduce an 'intensity-background' ratio 

P P 

N-- ~ [ I ( i ) -  B(i)]/~ B(i). 
Further we will express the maximum Bragg scattering 
in terms of the integrated intensity and we then get" 

P 

I(m)-S=f'  ~ [I(i)-B(i)] 
P 

=f'U ~ B(i)=U'pN~=UNB. 
In most cases we find that within a set of profiles 
obtained under fixed experimental conditions the shape 
of the Bragg scattering is the same for all profiles, and 
in this casef takes  the same value for all profiles in the 
set. We then get for the condition 

n 
d I _  d a ( / ) .  -5[I(j)-B] 
I a(I) " N 

1 [I-(~)z] [I(j)-B] + (b)2-f--~ [I(m)-B] 

o r  

l(j)-S I (3) 
I ( m )  - B f ( N  + 2) 

Now, to get a numerical estimate of I(j) and thereby of 
j we assume the shape of the Bragg scattering to be a 
unit normal distribution 

I(X)-B(X)=~(X)= ~ exp - . 



We will restrict the scattering to [XI < 2.5, whereby the 
cut-off value is 4% of the peak value, a shift which 
would be barely observable in a real profile, and we will 
replace summation by integration and j by Xj. We 
then get the intensity 

and 

i.e. 
5 

f -  [/2zc" 

f2-5 2"5 
I ~  ¢(X)dX=N l B(X)dX=5NB 

- - 2 . 5  4 - 2 - 5  

I 5NB 
I (Xm)-B  . . . .  . . . .  

]/2rc y2zc ' 

A determination of the best limits for the elastic peak 
can then be carried out by calculation of a(I)/I for a 
sufficient number of peak widths. For each case a 
straight line should be fitted to the points assigned as 

Introducing this into equation (3) we get 

I ( X j ) -  B l/2zc 
I (Xm)-B  (N+2)5 " 

So, if a minimum is obtained for example by varying 
the right-hand limit of the peak then the bias in the 
peak location to the right is 

zlb= Z ' 5 -  Xj  

and the bias in the intensity is 
2.5 

zJI= ¢(X)dX . 
xj 

Table 1 gives a series of values for ztb and AI as a func- 
tion of N. In addition, the values for a triangular peak 
shape are given, in which case f =  2 so that [ I (X j ) -  B]/ 
[I(X,,)-B] is 0.5/(N+2), nearly identical to the Gaus- 
sian case, and zlI is 0.5[0.5/(N+2)] z. The observed 
Bragg peaks generally have neither a Gaussian nor a 
triangular shape, but often something in between, as 
the profile is a convolution of Gaussian functions (e.g., 
the mosaic distributions of crystal and monochromator) 
and triangular functions (e.g., collimators). The bias in 
intensity is therefore probably in the worst case between 
2 and 4 %. As the tails of the peak are the part of the 
profile determined with the lowest precision it would 

Table l. The relative height of the last point in the peak, 
[I(Xj) - B]/[I(Xm)- B], as determined from minimal crl/I, 
the bias in the background location, Ab, in percent of 
total peak width, and the bias in the intensity, AI, in 
percent of total intensity, as a fimction of N, the 'inten- 
sity-background' ratio for Bragg scattering shaped as a 

unit normal distribution 

In addition is given the bias in the intensity, AI,, for a triangular 
shape of the Bragg scattering. 

t(xj) - B 
N l(Xr.)- B zlb (%) zlI (%) zlIt (%) 

0"25 0"22 15 3"5 2"5 
0.50 0.20 14 3'0 2"0 
1 0.16 12 2.3 1.4 
2 0.13 9 1-5 0.8 
4 0.08 5 0-7 0-3 

10 9".°4 9 9 0"! 

not make sense to adjust the observed intensity by a 
calculated amount. It would rather be natural to in- 
crease the peak width sufficiently before the calcula- 
tion of the intensity. 

Fig. 1 gives a visualization of some of the numbers 
given in Table 1. Two examples are given. In both cases 
the Bragg scattering is taken to be the same (in arbitrary 
units) and a change in N is obtained by shifting the 
background level. Although AI drops quite appreciably 
in going from N =  0.5 to N =  2 Ab falls much less, indi- 
cating that the easiest way to correct for the bias would 
be by adding 10 to 15% to all the determined full 
widths, as discussed above. 

Nothing is however gained by improving the 
counting statistics. The bias is only a function of the 
'intensity-background' ratio, which is not changed by 
longer counting time. The bias cannot be changed by 
increasing f either, as f is the product of the ratio f '  
between the maximum count and the total count and 
the number of points p in the peak. If the number of 
points is increased or decreased by a certain factor 
resulting from a change in step length, f '  is decreased 
or increased by the same factor leaving the product f 
unchanged. 

Description of  a J / J ( p )  

i-- _ a ~ l ( i )  J(p) =~](i)- i= p 
i=m P i=p+1 

o'yJ(p) 

I(i) 

I 

I I : p  
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m p p÷JB 
Fig. 2. Schematic representation of a reflexion profile and the 

corresponding crJ/,.I(p) function. Only the right-hand side 
is used for this function. A similar fcn.¢tion is thcr~ q~,lcul~J¢~ 
fgr t.he. !e.ft.-h~.n~l ~i@, 
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background giving B(i) and var [B(i)], (7(I)/I could 
then be obtained, the peak location corresponding to 
the minimum found, and a correction introduced. This 
approach would however result in lengthy calculations 
and we have therefore constructed a simple function, 
(rJ/Y(p), for determination of the limits. This function 
includes only data from half the profile at one time, as 
the profile is not necessarily symmetric. Secondly, the 
background B(i) is approximated by a mean value, and 
finally not all data points in the half-profile are in- 
eluded for a given p, as the background is assumed to 
consist of a fixed, small number of points, ft. This 
facilitates the determination of inhomogenities in peak 
and background. 

A reflexion profile with n points is outlined in Fig. 2. 
It is assumed that, for each peak, the number of 
points at each end of the profile which represents true 
background measurements equals or exceeds ft. The 
profile is divided into two parts at m, where I(m) is 
the point of maximum counts. The values I(i), 
m<_i<p represent the peak, and the background is 
determined by the next/3 points, so that in calculating 
(zJ/.J(p) for the right-hand part of the profile we are only 
concerned with the points i, where m<i<p+fl. The 
function cr~f/~'(p) for the right-hand part of the profile is 
defined as 

crJ/J(p) = rrJ(p)/J(p) (4) 

( Z/(i)+ P-- Z /(i) 
l = m  l = / + 1  

'=P ~ I(i). J ( P ) =  Z I(i) p - m + l  '=P+'~ 

i = m  /3 i = p + l  

~J/d~(p) is calculated for all p with m <p _< n - f l ,  and 
the value of" p giving minimum is the limit of the peak 

to the right. A limit for the left-hand side of the peak 
is found in a similar manner. 

Unusual behaviour of rz,,c/J(p) is generally an indi- 
cation that the reflexion profile does not have a shape 
which is acceptable. This can arise for many reasons 
and in nearly all sets of reflexion data one will detect 
a few profiles with very peculiar shapes, often the 
result of malfunctioning equipment. Two general cases 
are the occurrence of negative ¢rJ/,.C(p) and the non- 
occurrence of a real minimum in the function. 

The first case can arise from either spurious peaks in 
the background, for example tails from neighbouring 
reflexions, in which case the mean background value 
may become bigger than the mean peak value, whereby 
J ( p )  will become negative, or, what is the normal 
situation, the peak is so small, that a certain number of 
the J ( p )  values are negative. In this case the best 
approach is to store the profile until sufficient general 
information concerning the normal peak width is built 
up from other reflexions, then position the peak ac- 
cording to this information, make comparisons among 
the peak and background values, and if anything 
unusual is observed, then the data reduction must at 
least be partly manual. 

The second case corresponds to the situation when 
the minimum, say, for the right-hand side of the pro- 
file is found forp =n- /3 .  This indicates that insufficient 
background points have been measured, and that a 
partly manual treatment - at least a visual inspection - 
is necessary. 

Application 

The method has been used for a period of some years 
in data reduction of neutron diffraction data obtained 
at the DR3 reactor at Rise, Denmark (Lehmann & 

~ ¢ . q / . q ( p )  h k l : O 3 e  l o ' J / J ( p )  h k ¢ : 0 2 6  ( T , t / J ( p )  ~ ! h k l : 0 1 2  
! = 682 ] : 964 I ~ I = 89642 

. [  ~,, o'(l} • 46 . G( I )=  44 .006. '[ I o'(1) = 304 
i 

• 180 I ~ mlO00 / I 

/ ', / / i 
• ,,.. ', / oos .-...... ; ,.I 

,100- X ~ .  ~ r.-" • .900- " / /. , , . . . . . .~. 
t K ~ . o . . . -  • t ~. . / .  

p ~" . ; ' . .  , p P 
• ' ~, .004 .020 " .800 \ / i ,' steps s t e ; s  steps , y  ! / .  

; . /  

. I ( i )  counts~ ] ( i )  i counts k[ ( i )  

100- " I " " "  " •  • j 

• ' ° i " 

6o.  • • " "  ."  i 6o00 
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i " "" " f  I ' "  " "  " 

i . . . . . . . . .  , . . - , l "  . .  i 
=" 0 ~ O "" . . . . . .  ~ . . . . . .  
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Fi~. 3, Three r¢fltxion profilcs~ I(i)7 and the corresponding aJ/J(p) functions, The minimum corresponds to the last point 

in the peak, 

counts 
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Larsen, 1971) and at the Brookhaven High Flux Beam 
Reactor, U.S.A., (Lehmann, Koetzle & Hamilton, 
1972). It has been found that a fl which is slightly less 
than half the true background gives good result, and 
as the number of peak and background points are 
nearly identical then the thumb rule has been that fl-- 
0. ln. For each set of data the behaviour of the a J / J ( p )  
function has been followed, and a certain number of 
points have been added to each side of the peak to 
avoid any bias in the observed intensity. The number 
of points added has always been fixed for a whole set 
of data, generally between ill2 and fl for each side. 

The computing time for determination of the peak 
width is, because of the simple structure of aJ /J (p ) ,  
quite small, and in fact only a few additional calcula- 
tions have to be carried out, in which the mean value 
and the slope of the two backgrounds are compared. 
Several data-reduction programs have been used, and 
in the last version the calculations are carried out in 
two stages. In the first stage the peak widths for the 
good peaks are determined as a table function in 
sin 0/2. These so-called good peaks are peaks for 
which true minima in a J / J ( p )  are found on both sides 
of the peak, where a(I)/I is less than 0.25, and where 
no negative a J / J ( p )  are found. The table function is 
then used to locate the peak for reflexions for which 
a(I)/I is greater than 0.25 or for which negative 
a J / J ( p )  values are found. When a true minimum is 
not found then very little can be done, and for those 
reflexions a warning message is given. Finally for all 
reflexions the backgrounds are compared as men- 
tioned above. 

In general we find that up to 10% of the reflexions 
will have a warning message attached, and the pro- 
gram is so written that a printed profile can be ob- 
tained for these reflexions. It is however only in very 
few cases that manual evaluation is necessary. 

In Fig. 3(a), (b) and (c) are given three examples 
from the structure analysis of L-glutamic acid (Leh- 
mann, Koetzle & Hamilton, 1972) corresponding to N 
nearly infinity, N___ 2 and N ~ _ 1. The number of back- 
ground points, fl, is in all cases 4, and the minima 
corresponds to the last points in the peak. From the 
given examples it is not clear that I is biased, and it is 
only when all the data are gathered that we find clear 
indications that there is an effect. This is shown in 
Fig. 4, where the full width AO is given as a function of 
sin 0/2. The data in this case are also d~vided up as a 
function of I/a(1), and it can be clearly seen that the 

~.- o-~- 0----~r----: o 
6 ~, ~ i~ 3'2 -,-,-r/'~) 

AO ldeg ! * 

-+20"" T o ~ * *  

5.001 L " o o 

°*oo " / 
o 

~001 * 8 • " / c • 
o$o" 

3,00' o ° . o 
o • * o  v q  

ZOO ~ ~ 

1.00 

O' sin O/k 
o oi~ o.'2 o~ o;4 ~ 0:6 o.'7 A-1 

Fig. 4. The full width of the elastic peak, AO, as a function of 
sin 0/2. The reflexions are divided into groups according to 
I/a(I), and for each group an estimated a(AO) is given. It can 
be clearly seen that weak reflexions have underestimated AO. 
The variation of the full width with sin 0/2 is as expected, 
giving a minimum near sin OM/7, the focusing position. In 
the present experiment a Ge(111) reflexion was used giving 
sin 0M/2 = 0.15 A- 1. 

weak reflexions do tend to get their full width under- 
estimated. This curve could actually be used to give an 
experimental estimate of the bias, but until now it has 
been found satisfactory to work with a fixed additive. 
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